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Abstract. The finite-difference scheme of directed differences (the Courant-Isaacson-Ries 

scheme), which is widely used in the practice of aerohydrodynamic calculations, is studied 

theoretically and on the example of test problems. We applied the commonly used in practice 

Courant-Isakson-Ries directional difference scheme that allowed us to find and show 

distributions of velocities where the laws of the matter conservation are violated in the 

calculations in solving the matter conservation equations or the correspondence of the obtained 

solutions to the most general practical understandings on the essence of the matter transfer. A 

scheme free from the shortcomings of the Courant-Isaacson-Ries scheme has been constructed, 

tested, and proposed for use in aerohydrodynamic calculations by the finite difference method. 

Moreover, all the valuable properties of this well-known scheme are preserved. Among the 

maintained properties: are transportability, conservatism, stability in calculations, invariance, 

and adequacy of the essence of the physical phenomenon of the transfer of matter in space. The 

disadvantages of the new finite-difference scheme proposed for solving the equations of 

conservation of matter should be considered: an increase in the required RAM for storing 

electronic means of calculating information about the velocity field in memory and an increase 

in the number of calculations needed. 

1. Introduction 

A generalization of Newton's second law to spatial motion and deformation during this motion of a 

spatially connected medium was made by Leonard Euler [18]. Analysis and generalization of the results 

of previous works show that the acceleration of any point of a connected medium is equal to the stress 

tensor divergence in the vicinity of this point divided by the density of the medium around the point 

under study. 

Thanks to the results of research by Navier and Stokes [21] to justify the generalized state of a 

rheological body called Newton's viscous fluid at the beginning of the 19th century (approximately 

1810–1820), the equations of fluid motion appeared. These equations are called the "Navier-Stokes 

Equations." A new science was born - HYDROMECHANICS. 

For nearly 100 years, mathematicians have spent enormous efforts investigating and solving the 

Navier-Stokes equations. There was no question of solving the complete system of equations. Separate 

private, highly specialized tasks were solved. For example, the motion of a sphere in an infinite resting 

fluid or the slow movement of a viscous liquid (laminar). 

But in many cases, the authors discarded the so-called inertial terms of the Navier-Stokes equations. 

Their nonlinearity was an insurmountable obstacle to obtaining analytical solutions. The following 100 

years can be conditionally divided into two equal parts. In the first half of the twentieth century, scientific 
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and technological progress required knowledge about gas and fluid movement. Aeronautics needed laws 

to calculate the flow of gas around various surfaces. A semi-experimental, semi-heuristic branch of 

hydromechanics, named HYDRAULICS, developed rapidly. It made it possible to calculate a broader 

range of phenomena than scientists could afford within the framework of classical fluid mechanics. 

But classical hydromechanics also did not standstill. Simultaneously, with the advent of the first 

calculating devices (tube and even mechanical), a branch of hydromechanics began to form with the 

name of COMPUTATIONAL HYDROMECHANICS. It is the most interesting for us, and therefore we 

will dwell on its development in more detail. This science made it possible to make weather forecasts 

and calculate the transfer of climatic characteristics along the planet's surface along with the winds. The 

quality of weather forecasts has improved dramatically.  

This happened due to Courant, Isaacson, Rees, Levy [1]. They developed and researched a finite-

difference scheme that makes it possible to calculate the effect of both inertial terms in the equations of 

motion and convection terms in the equations of conservation of the mass of a moving medium.  

The scheme revealed some shortcomings associated with the order of accuracy in the approximation 

of derivatives [17]. More than a dozen similar schemes have been developed, mainly pursuing the goal 

of increasing the level of approximation by finite-differences of partial derivatives, such as Schemes: 

Lax and Wendroff [24], Lax-Wendroff [9,10], leapfrog, classics, etc. [22]. But due to the simplicity of 

the algorithmization, the Courant-Isaacson-Rees scheme [5] has become dominant.  

It has come to be used so frequently that it has been referred to as either a directed difference scheme 

or an “upstream” scheme for ease of reference. The mention of this scheme can be found in most 

problems devoted to calculating the circulation of the atmosphere and ocean [5,6,10]. Thanks to the 

research of Novosibirsk scientists under the leadership of G.I. Marchuk [6,7,8] and the achievements of 

mathematicians-computers Lodyzhenskaya, Godunov, Ryabenky, Richtmyer [2,11,12,17], the era of 

accelerated development of computational fluid mechanics began. 

Weather forecasts require more and more powerful computers. The requirements of computational 

fluid mechanics were among the factors that contributed to the influx of investment and brains into the 

development of computer technology. Currently, there are about a dozen mathematical models of 

weather forecasting. In their mathematical description, one can find a mention about the usage of 

“upstream” schemes. Where there are no such mentions, in the results can be notice the behavior of these 

schemas if one is familiar with the operation of these schemas. 

What can be found in these well-known and frequently used calculation schemes? This article is 

devoted to the answer to this question. It turns out that with a special and even frequently encountered 

distribution of velocities, the “upstream” scheme loses its conservatism when calculating conservative 

phenomena of momentum or substance transfer. This manifestation of non-conservatism in calculations 

can cast doubt on any result obtained because the law of conservation of matter is the basic fundamental 

law of our being. How so? How can one not notice such a problem that calls into question any 

calculation? 

This article describes how this fundamental problem was hidden and masked in the calculations but 

was not discovered. Moreover, the paper presents a modification of the “upstream” scheme in an 

expanded non-divergent form free from the loss of conservatism. The proposed scheme retains all the 

advantages of the Courant-Isaacson-Rees scheme and does not contain the disadvantage of a possible 

loss of conservatism. The modified schema can increase the performance of predictive models. The 

scheme is a new calculation tool in computational fluid mechanics.  

2. Materials and methods 

This study used a standard method for solving the matter transfer equations (sometimes called the matter 

conservation equations) using finite difference approximations. Using this method allowed us to find 

velocity distributions leading to a loss of conservativeness in calculations for the scheme of directional 

differences most widely used in practical calculations. Based on the results obtained, a possible reason 

is given why the fatal problem of loss of conservatism has been hidden so far and continues to exist 

imperceptibly in most software products that calculate hydrodynamic processes. 



 

The conducted studies made it possible to theoretically and practically show the reasons for the loss 

of conservatism in the calculations. In this case, the phenomenon of “sticking” the solution to zones of 

zero velocities was noted. 

During the research, the method of mathematical analysis of differential equations and their finite-

difference analogs, test calculations using the most straightforward tools for calculations, and comparing 

the calculation results with analytical solutions and general ideas about the essence of conservation laws 

during the transfer of matter were used. 

Based on the results of the studies, modifications of calculation schemes are proposed that remain 

conservative for any velocity distributions. Their implementation in practice requires minor changes in 

the algorithms of the models. The result will be the possibility of increasing the computational time step 

due to the increased stability of the solution by reducing the factors perturbing the solution and, as a 

result, increasing the accuracy and efficiency of calculations. 

3. Results and discussion 

The equation of matter transfer in space is an integral part of the vast majority of mathematical models 

of aero hydrodynamics. These are the problems of weather forecasting [3,19,24], calculation of water 

exchange in the seas [13,20] and oceans [4,9,11], transport and distribution of pollutants in the 

atmosphere [16], and surface water bodies [17]. It is the most challenging part of the equations of motion 

and transfer equations for calculations. Let us consider the transport equation in more detail, discarding 

all other factors. 

For the one-dimensional spatial case, the equation for the transport of matter S is as follows: 

The first form of the mass conservation equation 
𝜕𝑆

𝜕𝑡
= −

𝜕(𝑆𝑉)

𝜕𝑥
, (1a) 

The second form (expanded form and identical to the first form) 

  
∂S

∂t
= −(V

∂S

∂x
+ S

∂V

∂x
)(1b) (1) 

where ∂ is a partial derivative, 

 t- time, sec, 

 x- spatial coordinate, m, 

 S- some mass of matter, kg, 

 V-velocity of matter, m/sec. 

Let us show that the finite-difference analogs of the convective parts of Eq. (1), which are widely 

used in world practice, can lose their conservatism for some velocity distributions. Here we do not 

consider diffusion, which is often used to improve stability in calculations [14, 15]. Natural diffusion is 

not considered, and computational diffusion is minimized. 

We try to show that the most straightforward problems of aero hydrodynamics already in two-

dimensional space almost always guarantee the formation of velocity fields, where the well-known 

schemes lose their conservatism. 

Note that equation (1) is a record of the law of conservation of matter in differential form. This means 

that always and at any movement speed of a substance, its amount should not change. This mandatory 

property is called the property of conservatism [13,17]. 

First of all, let us write down the finite-difference analogs of Eq. (1), which are often used in practice 

and written in explicit form. 

Explicit schemes are schemes in which the future distribution of matter is completely calculated 

based on the existing distribution of matter and known velocities of movement [1,10,20]. The most 

common calculation schemes are directional difference schemes [4,9,13,22,24]. 

The best-known finite-difference scheme of directed differences is called the “Courant-Isaacson-

Rees scheme” [13]. This scheme is considered conservative, transportable, and stable under the Courant-

Levy condition [1,2,15,22,23]. Transport schemes are schemes that, when applied, provide an imitation 

of the movement of numerical values characterizing the amount of a substance in the direction of the 

speed of movement [12,13]. Let us add one more important property to the analysis of the circuits - 



 

invariance. Invariance is the independence of the physical process and the calculation imitating it from 

the choice of coordinates. 

For the equation(1a) of writing equation (1), we have finite-difference analog 

𝑆𝑡+1,𝑖 =  𝑆𝑡,𝑖  −
△ 𝑡

△ 𝑥
 ∗ (𝑉𝑡,𝑖 ∗ 𝑆𝑡,𝑖 − 𝑉𝑡,𝑖−1 ∗ 𝑆𝑡,𝑖−1), 

𝑖𝑓 𝑉𝑡,𝑖 ˃ 0        (2) 

𝑆𝑡+1,𝑖 = 𝑆𝑡,𝑖  −
△ 𝑡

△ 𝑥
 ∗ (𝑉𝑡,𝑖+1 ∗ 𝑆𝑡,𝑖+1 − 𝑉𝑡,𝑖 ∗ 𝑆𝑡,𝑖), 

𝑖𝑓 𝑉𝑡,𝑖 < 0 

 

For the equation (1b) of writing equation (1), we have finite-difference analog 

𝑆𝑡+1,𝑖 = 𝑆𝑡,𝑖 −
△ 𝑡

△ 𝑥
 ∗ (𝑉𝑡,𝑖 ∗ (𝑆𝑡,𝑖 − 𝑆𝑡,𝑖−1) + 𝑆𝑡,𝑖 ∗ (𝑉𝑡,𝑖+1 − 𝑉𝑡,𝑖)), 

𝑖𝑓𝑉𝑡,𝑖  ˃ 0        (3) 

𝑆𝑡+1,𝑖 = 𝑆𝑡,𝑖  −
△ 𝑡

△ 𝑥
 ∗ (𝑉𝑡,𝑖 ∗ (𝑆𝑡,𝑖+1 − 𝑆𝑡,𝑖) + 𝑆𝑡,𝑖 ∗ (𝑉𝑡,𝑖 − 𝑉𝑡,𝑖−1 )), 

𝑖𝑓 𝑉𝑡,𝑖 < 0 

 

Sometimes, researchers write one of the two inequalities for schemes (2) and (3) in a non-strict form, 

replacing “>” (or “<”) with “≥” (or “≤”). Because in the strict forms in the inequalities “>” (or “<”) the 

velocity equal zero excluded from computations. Thus, an attempt is made to ensure the entire possible 

spectrum of velocities calculate fully. Let us show that this action either does not affect anything or can 

lead to the loss of the invariance of the calculation. The latter is also an unacceptable phenomenon in 

the calculations. 

The equation (1a) is very often used in aerohydrodynamic models [3,7,8,9,11,12,13,14,19,23]. 

Note, that the equation (1b) and its finite-difference analog (from now on, the f.-d. analog) are rarely 

used due to the need for twice the number of calculations compared to the first form of the substance 

transfer equation with identical results in the case of similar distributions of velocities and invariance of 

the sign of the velocity. But the reasons for this ignorance, in our opinion, are much more serious. 

But it is the second form of writing equation (1) that made it possible to propose a new conservative 

f.-d. analog for solving equation (1). 

The conservatism of f.-d. analogs for transport equations are verified as follows. The calculated 

values of the substance at the future moment are written out for the sequence of calculation points, and 

their mutual destruction is checked during summation. Let us consider the distribution of velocities along 

the X-axis, at which the conservatism of finite-difference analogs (2) and (3) is violated. Suppose that 

for nodes with a serial number less than 7, the velocity of the substance is positive, and for nodes with 

a serial number of 7 and above, the velocity of the substance is negative. 

Then f.-d. analog (2) for a group of nodes near node number 7 will look like this. 

St+1,4 =  St,4 −
△ t

△ x
⋅ (Vt,4 ⋅ St,4 − Vt,3 ⋅ St,3) 

St+1,5 =  St,5 −
△ t

△ x
⋅ (Vt,5 ⋅ St,5 − Vt,4 ⋅ St,4) 

St+1,6 =  St,6 −
△ t

△ x
⋅ (Vt,6 ⋅ St,6 − Vt,5 ⋅ St,5) 

  St+1,7 =  St,7 −
△t

△x
⋅ (Vt,8 ⋅ St,8 − Vt,7 ⋅ St,7)  (4) 

St+1,8 =  St,8 −
△ t

△ x
⋅ (Vt,9 ⋅ St,9 − Vt,8 ⋅ St,8) 

𝑆𝑡+1,9 =  𝑆𝑡,9 −
△ 𝑡

△ 𝑥
⋅ (𝑉𝑡,10 ⋅ 𝑆𝑡,10 − 𝑉𝑡,9 ⋅ 𝑆𝑡,9) 



 

Let's ignore the lonely terms "𝑉𝑡,10 ⋅ 𝑆𝑡,10" and "Vt,3 ⋅ St,3". These terms must either interact with the 

boundary conditions or cancel with the terms appearing in the calculation of "St,3 " and "St,10 ".  

But note that the terms "𝑉𝑡,6 𝑆𝑡,6” and "𝑉𝑡,8 𝑆𝑡,8” for a given change in the sign of the velocities at the 

point with index 7 is not reduced. This means that a scheme recognized as conservative and often used 

in practice under certain conditions loses its conservatism. 

Let us write the formulas for calculating the distribution of matter “S”, provided that the second form 

of writing the equation for the transfer of matter (1) was used. 

 

𝑆𝑡+1,4 =  𝑆𝑡,4 −
△ 𝑡

△ 𝑥
⋅ (𝑉𝑡,4 ⋅ 𝑆𝑡,4 − 𝑉𝑡,4 ⋅ 𝑆𝑡,3 + 𝑉𝑡,5 ⋅ 𝑆𝑡,4 − 𝑉𝑡,4 ⋅ 𝑆𝑡,4) 

𝑆𝑡+1,5 =  𝑆𝑡,5 −
△ 𝑡

△ 𝑥
⋅ (𝑉𝑡,5 ⋅ 𝑆𝑡,5 − 𝑉𝑡,5 ⋅ 𝑆𝑡,4 + 𝑉𝑡,6 ⋅ 𝑆𝑡,5 − 𝑉𝑡,5 ⋅ 𝑆𝑡,5) 

𝑆𝑡+1,6 =  𝑆𝑡,6 −
△𝑡

△𝑥
⋅ (𝑉𝑡,6 ⋅ 𝑆𝑡,6 − 𝑉𝑡,6 ⋅ 𝑆𝑡,5 + 𝑉𝑡,7 ⋅ 𝑆𝑡,6 − 𝑉𝑡,6 ⋅ 𝑆𝑡,6) (5) 

𝑆𝑡+1,7 =  𝑆𝑡,7 −
△ 𝑡

△ 𝑥
⋅ (𝑉𝑡,7 ⋅ 𝑆𝑡,8 − 𝑉𝑡,7 ⋅ 𝑆𝑡,7 + 𝑉𝑡,7 ⋅ 𝑆𝑡,7 − 𝑉𝑡,6 ⋅ 𝑆𝑡,7) 

𝑆𝑡+1,8 =  𝑆𝑡,8 −
△ 𝑡

△ 𝑥
⋅ (𝑉𝑡,8 ⋅ 𝑆𝑡,9 − 𝑉𝑡,8 ⋅ 𝑆𝑡,8 + 𝑉𝑡,8 ⋅ 𝑆𝑡,8 − 𝑉𝑡,7 ⋅ 𝑆𝑡,8) 

𝑆𝑡+1,9 =  𝑆𝑡,9 −
△ 𝑡

△ 𝑥
⋅ (𝑉𝑡,9 ⋅ 𝑆𝑡,10 − 𝑉𝑡,9 ⋅ 𝑆𝑡,9 + 𝑉𝑡,9 ⋅ 𝑆𝑡,9 − 𝑉𝑡,8 ⋅ 𝑆𝑡,9) 

 

As in the case of the scheme (4), we ignore the terms “𝑉𝑡,4 ⋅ 𝑆𝑡,3” and “𝑉𝑡,9 ⋅ 𝑆𝑡,10”. These terms will 

either have to interact with the boundary conditions or be destroyed when calculating the substance at 

points with indices “3” and “10”. 

It can be seen that the terms “𝑉𝑡,6 ⋅ 𝑆𝑡,5” and “𝑉𝑡,6 ⋅ 𝑆𝑡,7” do not cancel if the velocity changes sign 

at point "7" and as written above. 

Even this scheme, which is rare, but sometimes used in calculations, also loses its conservatism under 

certain conditions. Here it is considered only because it made it possible to create a new conservative 

scheme for calculating the motion of an admixture. But this will be discussed later in the text. 

The one-dimensional calculation section is divided into parts so that there are 100 calculation nodes. 

Let the distance between nodes be one meter. In the first to the node section, the velocity is positive and 

equal one meter per second. In the section from the 51st node to the 100th node, the velocity is negative 

and equals minus one meter per second. On nodes with numbers “20”, “21”, “22,” the speed is reduced 

to +0.5m/s. On nodes with numbers "79", "80", "81" the speed increases to -0.5m/sec.  

Decreasing the velocity in two zones of the calculated segment was done to see the behavior of finite 

difference schemes when calculating the passage of matter through these zones. In nodes with numbers 

“1,” “2,” “99,” “100,” there is no velocity of the substance to emphasize once again the impossibility of 

the substance entering the calculation zone from the outside. Although this protection, as it is easy to 

check, is redundant. The distribution of velocities is set to be symmetrical with respect to the center of 

the computational zone. If the distribution of matter at the initial moment is also symmetrical, then the 

solution must be symmetrical at any time. So, it will be possible to verify the invariance of the design 

schemes without additional calculations. 

Figure 1 shows the distribution of velocity for each of 100 calculated nodes. 



 

 
Figure 1. Distribution of matter transfer rates for each of 100 calculated nodes (Compiled by the 

authors). 

 

For all 100 nodes, except for numbers “10” and “91”, the initial content of matter is set equal to zero. 

At points with numbers “10” and “91”, the initial content of the substance is set equal to “10”. This is a 

symmetrical distribution of matter relative to the center of the calculated area. 

The solution must be transportable, conservative, symmetrical, and adequate to reality. Symmetry 

should be observed in the solution as a consequence of the symmetry in the velocity distribution and the 

initial distribution of matter. A physically justified solution will be considered if there are no oscillations 

in the solution. The fact is that sometimes conservatism in the amount of a substance can be combined 

with the appearance of unreasonably high values of the substance or even its negative values. It will be 

possible to see the manifestation of inadequacy for one of the schemes below. 

We will use a time step equal to the maximum limit value of the time step according to the Courant-

Levy criterion. That is, ∆𝑡 =  
∆𝑥

𝑉𝑚𝑎𝑥
= 1.0𝑠𝑒𝑐. 

It is clear that the substance, moving towards the center of the calculated segment from nodes with 

serial numbers “10” and “91”, will reach the center of the segment a little later than the 40thtime interval 

(less due to the fact that there is a section where the substance will move at a speed of 0.5 m/s instead 

of speed 1.0 meter/s). 

Figure 2 shows the distribution of matter at the initial moment of time, for the 12th time interval (in 

zones of low speeds). 

 

 
 

Figure 2 Distribution of matter at the initial moment of time, and for the 12th time interval (in the 

zone of low speeds) (Compiled by the authors). 
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Figure 2 shows the symmetrical advance of matter towards the center of the computational zone. We 

notice some discrepancy in the results between the Courant schemes (with and without modification) 

and the schemes for the equation (1b) (with and without modification). It can be concluded that the 

scheme viscosity for the Courant scheme and the scheme for the equation (1a) does not manifest 

themselves in the same way in time but in the same way in action. Figure 3 shows the distribution of 

matter for the 30th time interval. All four circuits give identical results, which proves the sameness in 

the manifestation of circuit viscosity. 

 

 
 

Figure 3. Distribution of matter at the initial moment of time, and for the 30th time interval (after the 

zone of low speeds) (Compiled by the authors). 

 

On the 41st time interval, the matter, as expected, reaches points with numbers “50” and “51”, in 

which the velocities have different signs. On the 41st time interval, the conservativeness of the 

calculation is lost. The loss of conservatism at interval 41 is shown in figure 4. 

 

 
 

Figure 4. Distribution of matter at the initial moment of time, for 41-time intervals (Compiled by the 

authors) 

 

The Courant-Isaacson-Rees scheme changes the substance contained in the calculated zone from 20 

to 17.50, a decrease of mass (time step 1, space step 1, the velocity distribution is given in figure 1). The 

second form of writing equation (1) changes the substance contained in the calculation zone from 20 to 

22.50, an increase of mass. And only after modification do both of these schemes retain the conservatism 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Comparison of the results of the work of four schemes when solving the equation for the 

transfer of matter (30th interval)

Initial moment

Scheme_Courant,...

Scheme_second form

Scheme_Courant

(modification)
Scheme_second form

(modification)

Quantity of matter

Meter

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Comparison of the results of the work of four schemes when solving the equation for the 

transfer of matter (41th interval)

Initial moment

Scheme_Courant,...

Scheme_second form

Scheme_Courant

(modification)

Quantity of matter

Meter



 

of the calculation. When applying the modified schemes, the substance, as it was in the initial 

distribution of 20 units, remained the same after transferring the substance to the points where the 

velocities change sign. The amount of substance for all schemes is positive for all time intervals and the 

entire computational zone. That is, all results are adequate. Strict or non-strict inequality was used in 

schemes (2) and (3) and this does not matter since the velocities in the zone of loss of conservatism were 

always different from zero. 

It also becomes clear why hydrodynamicists avoid using the second form of the matter conservation 

equation (1) and mainly use only the first form. The disappearance of matter cannot crash the 

computational process. An uncontrolled increase in the amount of a substance can cause an emergency 

termination of calculations. For the first form of writing Eq. (1), there is even a very optimistic name, 

the “divergent” form of writing the conservation equations [13]. There is even a practice of switching 

from the usual forms of writing equations to the “divergent” form only to ensure the possibility of using 

the Courant-Isaacson-Rees scheme [13]. 

The Courant-Isaacson-Rees scheme and the scheme for the second form of the conservation equation 

(1) after modifications show transportability, conservatism, stability, invariance (symmetry), adequacy. 

Equations (7), and (8) reveal the modification and show the structures of the new schemes, 

 𝑈𝑡,𝑖 =  𝑉𝑡,𝑖 𝑖𝑓 𝑉𝑡,𝑖 ≥ 0 , 

 𝑈𝑡,𝑖 =  0 𝑖𝑓 𝑉𝑡,𝑖 > 0 , 
 𝑊𝑡,𝑖 =  𝑉𝑡,𝑖 𝑖𝑓  𝑉𝑡,𝑖 ≤ 0 , (6)  

 𝑊𝑡,𝑖 =  0 𝑖𝑓 𝑉𝑡,𝑖 > 0; 

For the Courant-Isaacson-Rees scheme 

𝑆𝑡+1,𝑖 =  𝑆𝑡,𝑖  −
△𝑡

△𝑥
 ⋅ [

𝑈𝑡,𝑖 𝑆𝑡,𝑖 − 𝑈𝑡,𝑖−1 𝑆𝑡,𝑖−1

+
𝑊𝑡,𝑖+1 𝑆𝑡,𝑖+1 − 𝑊𝑡,𝑖 𝑆𝑡,𝑖

] (7) 

And for the scheme of the second form of writing the conservation equation (1) 

𝑆𝑡+1,𝑖 =  𝑆𝑡,𝑖  −
△𝑡

△𝑥
 ⋅ [

𝑈𝑡,𝑖 ∗ (𝑆𝑡,𝑖 − 𝑆𝑡,𝑖−1) + 𝑆𝑡,𝑖 ∗ (𝑈𝑡,𝑖+1 − 𝑈𝑡,𝑖 )
+

𝑊𝑡,𝑖 ∗ (𝑆𝑡,𝑖+1 − 𝑆𝑡,𝑖) + 𝑆𝑡,𝑖 ∗ (𝑊𝑡,𝑖 − 𝑊𝑡,𝑖−1 )
] (8) 

 

Where  𝑈𝑡,𝑖 ,  𝑊𝑡,𝑖 are intermediate variables calculated through the value of the velocity of the matter 

and depending on the sign of this velocity. 

The following objection may arise. Velocities having differing signs in neighboring nodes are rare in 

practice. This is an entirely wrong objection. In any even two-dimensional problem, where there is an 

expansion or contraction of a moving flow, the velocity components perpendicular to the main motion 

will have neighboring points at which the sign of the velocity’s changes to the opposite. Only in a pipe 

of constant diameter or a channel of a continuous cross-section will there be no situations leading to a 

loss of conservatism in the calculations when using directed finite difference schemes. The common of 

which is the Courant-Isaacson-Rees scheme [13]. We can conclude that schemes (7) and (8) are suitable 

for calculations in which there are equations for the transfer and conservation of matter. However, it is 

not. Consider the following velocity diagram. Let zero velocities be set in the central symmetrical section 

of the calculation area (points with numbers “50” and “51”). In practice, this means either an island in 

the middle of a river or a solid body at rest in a moving stream of gas or liquid. The velocity distribution 

diagram is shown in figure 5. 

 



 

 
 

Figure 5. Velocity diagram with a zone of zero velocities in the center of the computational zone 

(Compiled by the authors). 

 

First of all, we note the loss of invariance (symmetry in this case) for the Courant-Isaacson-Rees 

scheme on 41 calculation intervals. The loss of invariance is shown in figure 6. 

 

 
 

Figure 6. Loss of invariance of the Courant-Isaacson-Rees scheme when approaching the zone of 

zero velocities (Compiled by the authors). 

 

We note an interesting fact. For positive velocities, conservatism is preserved when approaching the 

section of zero velocities. The left peak is 10, the right one is 6.88. 

It is impossible to maintain conservatism for both positive velocities and negative velocities at the 

same time. Even if we write a non-strict inequality for both parts of the scheme (2), they are calculated 

sequentially. Therefore, the last calculation will suppress the previous calculations, and the loss of 

conservatism will not disappear. Let's introduce a correction into the test problem in which there is a 

section with zero velocities. Let the velocities change their sign to the opposite on the 43rd time interval. 

We will only check the operation of the modified schemes since neither the Courant-Isaacson-Rees 

scheme nor the scheme of the second form of the matter conservation equation (3) passed the first test. 

In this test problem, after the 43rd interval, we expect the substance to leave the area of zero velocities 

and the movement of these peaks to the edges of the computational zone. Figure 7 shows the distribution 

of matter in the 50th time interval (50 seconds). 
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Figure 7. Substance distribution on the 50th time interval (50 seconds) for modifications of 

schemes (2) and (3) made according to the rule (6), (7), (8) (Compiled by the authors). 

 

Despite the conservatism of both modifications of schemes (6), (7), (8), the inadequacy of the 

calculation is also visible. In the case of modification (6), (7), the substance cannot leave the area of zero 

velocities and remains there forever. Only the substance that has not yet reached this “dead zone” of 

zero velocities can be transported by the scheme (6), (7) to the edges of the calculated area.  

The modification in Eqs.(6)and(8), carried out for the scheme of directed differences of the second 

form of the equation of conservation of matter, passed both test checks without remarks. In this way, it 

surpasses all other schemes studied, and it is this scheme that is recommended for use in problems of 

aerohydrodynamics. 

The loss of conservatism when solving inherently conservative equations is a very serious problem. 

The question may arise - how has such a problem not been studied so far, and how did it manage to be 

hidden from researchers? 

The fact is that the smaller the absolute values of the velocities in the sign change zone, the smaller 

the loss of conservatism. This conclusion can be drawn by estimating the terms that cannot mutually 

annihilate in the velocity sign change zone (4.5). Diffusion processes blur the zones of loss of 

conservatism, disguising them as rounding errors in calculations. Computational artificial viscosity is 

also involved in making the areas of loss of conservatism. 

4. Conclusions 

Applying the calculation schemes developed in this article will make the aerohydrodynamic calculations 

more stable. Fluctuations in the solution will not need to be smeared and smoothed either by artificial 

diffusion or by computational viscosity. The time step can be increased, which will naturally increase 

the efficiency of aerohydrodynamic calculations. The smaller the absolute values of the velocities that 

change their sign at neighboring points, the smaller the loss of conservatism. Transverse velocities are 

usually always much less than the longitudinal and central motions of the flow of matter. This 

circumstance usually also masks the loss of conservatism. The discovered non-conservatism is 

traditionally explained by rounding errors in figures when they are calculated on a computer. 

But it doesn't turn out that way. The loss of conservatism is conceptually embedded in the directed 

finite-difference analogs of the convective terms of the equations of conservation of matter. The new 

scheme (6) is free from this shortcoming. 

The result of applying the new scheme will be using time steps as close as possible to the limiting 

time step determined by the Courant-Levy criterion. This means that a natural result of applying the new 

scheme will be an increase in the efficiency of solving aerodynamic problems. Any of the modern two-

dimensional and three-dimensional computational aerohydrodynamic systems that use the scheme of 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Comparison of the results of the work of four schemes in solving the equation for the 

transfer of matter (50th interval) (when the sign of the velocities changes in the center 

of the segment at the 43rd time interval)

Initial moment

Scheme_Courant

(modification)

Scheme_second fond

(modication)

Quantity of matter

Meter



 

directed differences in calculations after minor code changes will increase the accuracy and efficiency 

of calculations. Applying the newly proposed modification of the directional difference scheme will 

require minimal code changes in aerodynamic models using the Courant-Isaacson-Rees scheme. 
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